/BrandPost: Parallelism in Python: Directing Vectorization with NumExpr*

BrandPost: Parallelism in Python: Directing Vectorization with NumExpr*

<!–Parallelism in Python: Directing Vectorization with NumExpr* | InfoWorld

pum4

Intel

“);
});
try {
$(“div.lazyload_blox_ad”).lazyLoadAd({
threshold : 0, // You can set threshold on how close to the edge ad should come before it is loaded. Default is 0 (when it is visible).
forceLoad : false, // Ad is loaded even if not visible. Default is false.
onLoad : false, // Callback function on call ad loading
onComplete : false, // Callback function when load is loaded
timeout : 1500, // Timeout ad load
debug : false, // For debug use : draw colors border depends on load status
xray : false // For debug use : display a complete page view with ad placements
}) ;
}
catch (exception){
console.log(“error loading lazyload_ad ” + exception);
}
});

One interesting way of achieving Python parallelism is through NumExpr*, in which a symbolic evaluator transforms numerical Python expressions into high-performance, vectorized code. Learn how to refactor Python code to take advantage of NumExpr’s capabilities.

Download the full article from The Parallel Universe Magazine below





Original Source

Leave a reply

Your email address will not be published. Required fields are marked *

**************